Skip to main content

Performance Monitoring System

Overview

The ArthaChain blockchain incorporates a comprehensive performance monitoring system that provides real-time insights into network health, node performance, and resource utilization. This monitoring infrastructure is essential for maintaining high availability, optimizing throughput, and ensuring the overall reliability of the network.

Architecture

The performance monitoring system is implemented primarily through the PerformanceMonitor class in the blockchain_node/src/ai_engine/performance_monitor.rs file. It's designed to collect, analyze, and report on various metrics across the system, with a focus on both classical and quantum computing elements.

pub struct PerformanceMonitor {
/// Configuration
config: MonitoringConfig,
/// Current performance snapshot
current_snapshot: Arc<RwLock<Option<PerformanceSnapshot>>>,
/// Performance history
history: Arc<RwLock<Vec<PerformanceSnapshot>>>,
/// Detected anomalies
anomalies: Arc<RwLock<Vec<PerformanceAnomaly>>>,
/// Neural monitor for predictions
neural_monitor: Arc<RwLock<QuantumNeuralMonitor>>,
/// Node ID
node_id: String,
/// Running status
running: Arc<RwLock<bool>>,
}

Core Monitoring Components

The performance monitoring system collects a wide range of metrics across various subsystems:

1. System Resource Monitoring

CPU Metrics

pub struct CpuMetrics {
/// Overall CPU usage percentage
pub usage_percent: f32,
/// Per-core usage percentages
pub core_usage: Vec<f32>,
/// CPU temperature if available (Celsius)
pub temperature: Option<f32>,
/// CPU frequency (MHz)
pub frequency_mhz: f32,
/// Process-specific CPU usage
pub process_usage: f32,
}

Memory Metrics

pub struct MemoryMetrics {
/// Physical memory used (MB)
pub physical_used_mb: u64,
/// Physical memory total (MB)
pub physical_total_mb: u64,
/// Virtual memory used (MB)
pub virtual_used_mb: u64,
/// Swap memory used (MB)
pub swap_used_mb: u64,
/// Garbage collection metrics
pub gc_metrics: Option<GcMetrics>,
/// Memory leak detection indicators
pub leak_indicators: Vec<String>,
}

Disk Metrics

pub struct DiskMetrics {
/// Read operations per second
pub read_ops_per_sec: f32,
/// Write operations per second
pub write_ops_per_sec: f32,
/// Read bandwidth (MB/s)
pub read_mbps: f32,
/// Write bandwidth (MB/s)
pub write_mbps: f32,
/// Disk usage percentage
pub usage_percent: f32,
/// Available space (GB)
pub available_gb: f32,
}

Network Metrics

pub struct NetworkMetrics {
/// Ingress bandwidth (KB/s)
pub ingress_kbps: f32,
/// Egress bandwidth (KB/s)
pub egress_kbps: f32,
/// Packet loss rate (percentage)
pub packet_loss_percent: f32,
/// Network latency (ms)
pub latency_ms: f32,
/// P2P connection count
pub p2p_connections: u32,
/// Open socket count
pub open_sockets: u32,
}

2. Blockchain-Specific Metrics

Node Operational Metrics

pub struct NodeMetrics {
/// Transactions per second
pub transactions_per_sec: f32,
/// Average transaction validation time (ms)
pub avg_tx_validation_ms: f32,
/// Block production rate (blocks per minute)
pub blocks_per_min: f32,
/// Average block size (KB)
pub avg_block_size_kb: f32,
/// Memory pool size (transactions)
pub mempool_size: u32,
/// Consensus participation metrics
pub consensus_metrics: ConsensusMetrics,
/// Smart contract execution metrics
pub contract_metrics: ContractMetrics,
}

Consensus Metrics

pub struct ConsensusMetrics {
/// Consensus algorithm being used
pub algorithm: String,
/// Time to finality (seconds)
pub time_to_finality_sec: f32,
/// Messages processed per second
pub messages_per_sec: f32,
/// Participation rate (percentage)
pub participation_percent: f32,
/// Quantum-resistant overhead (percentage)
pub quantum_resistant_overhead: Option<f32>,
}

Smart Contract Metrics

pub struct ContractMetrics {
/// Contracts executed per second
pub contracts_per_sec: f32,
/// Average execution time (ms)
pub avg_execution_ms: f32,
/// Average gas used per contract
pub avg_gas_used: u64,
/// Function call counts
pub function_calls: HashMap<String, u64>,
/// WASM module load time (ms)
pub wasm_load_ms: f32,
}

3. AI and Quantum Monitoring

Model Inference Metrics

pub struct ModelInferenceMetrics {
/// Model name
pub model_name: String,
/// Model type
pub model_type: String,
/// Average inference latency (ms)
pub avg_inference_ms: f32,
/// 95th percentile inference latency (ms)
pub p95_inference_ms: f32,
/// 99th percentile inference latency (ms)
pub p99_inference_ms: f32,
/// Throughput (inferences per second)
pub throughput_per_sec: f32,
/// Accelerator utilization percentage
pub accelerator_util_percent: f32,
/// Per-layer latency breakdown
pub layer_latencies: HashMap<String, f32>,
/// Quantization information
pub quantization_info: Option<String>,
/// Using quantum acceleration
pub quantum_accelerated: bool,
}

Quantum Metrics

pub struct QuantumMetrics {
/// Quantum random number generation throughput (bits/sec)
pub qrng_throughput: f32,
/// Post-quantum cryptography overhead (percentage)
pub pq_crypto_overhead: f32,
/// Quantum-resistant Merkle tree operations per second
pub merkle_ops_per_sec: f32,
/// Estimated quantum security level (bits)
pub security_level_bits: u32,
/// Quantum circuit simulation metrics
pub simulation_metrics: Option<QuantumSimulationMetrics>,
}

GPU Metrics (for AI Acceleration)

pub struct GpuMetrics {
/// Overall GPU usage percentage
pub usage_percent: f32,
/// GPU memory usage (MB)
pub memory_used_mb: u64,
/// GPU memory total (MB)
pub memory_total_mb: u64,
/// GPU temperature if available (Celsius)
pub temperature: Option<f32>,
/// Tensor core utilization percentage
pub tensor_core_util: Option<f32>,
/// CUDA/OpenCL core utilization
pub core_util: f32,
/// Quantum simulation resource usage
pub quantum_sim_usage: Option<f32>,
}

Data Collection and Management

Performance Snapshots

All collected metrics are organized into performance snapshots that provide a complete picture of the system at a specific point in time:

pub struct PerformanceSnapshot {
/// Node identifier
pub node_id: String,
/// Timestamp (epoch seconds)
pub timestamp: u64,
/// CPU metrics
pub cpu: CpuMetrics,
/// GPU metrics (if available)
pub gpu: Option<GpuMetrics>,
/// Memory metrics
pub memory: MemoryMetrics,
/// Network metrics
pub network: NetworkMetrics,
/// Disk metrics
pub disk: DiskMetrics,
/// Model inference metrics
pub model_inference: Vec<ModelInferenceMetrics>,
/// Node operational metrics
pub node: NodeMetrics,
/// Quantum metrics
pub quantum: Option<QuantumMetrics>,
/// Neural prediction metrics
pub neural_predictions: HashMap<String, f32>,
}

Collection Process

The monitoring system collects data at regular intervals defined in the configuration:

pub async fn start(&self) -> Result<()> {
if !self.config.enabled {
return Ok(());
}

let mut running = self.running.write().await;
if *running {
return Err(anyhow!("Performance monitor already running"));
}

*running = true;
drop(running);

let config = self.config.clone();
let node_id = self.node_id.clone();
let current_snapshot = self.current_snapshot.clone();
let history = self.history.clone();
let anomalies = self.anomalies.clone();
let neural_monitor = self.neural_monitor.clone();
let running = self.running.clone();

tokio::spawn(async move {
let mut interval_timer = interval(Duration::from_millis(config.sampling_interval_ms));

while *running.read().await {
interval_timer.tick().await;

// Collect system metrics
if let Ok(snapshot) = Self::collect_system_metrics(&node_id).await {
// Update current snapshot
*current_snapshot.write().await = Some(snapshot.clone());

// Update history
history.write().await.push(snapshot.clone());

// Detect anomalies
if config.ai_optimization.enabled {
if let Ok(detected_anomalies) =
Self::detect_anomalies(&snapshot, &neural_monitor).await
{
if !detected_anomalies.is_empty() {
anomalies.write().await.extend(detected_anomalies);
}
}
}

// Clean up old history based on retention period
Self::cleanup_old_data(history.clone(), config.retention_period_days).await;
}
}
});

Ok(())
}

Data Retention

The system automatically manages historical data based on the configured retention period:

async fn cleanup_old_data(history: Arc<RwLock<Vec<PerformanceSnapshot>>>, retention_days: u32) {
let now = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_default()
.as_secs();

let cutoff = now - (retention_days as u64 * 24 * 60 * 60);

let mut history_lock = history.write().await;
history_lock.retain(|snapshot| snapshot.timestamp >= cutoff);
}

Anomaly Detection

The system includes AI-powered anomaly detection to identify potential issues:

pub struct PerformanceAnomaly {
/// Anomaly ID
pub id: String,
/// Detected timestamp (epoch seconds)
pub detected_at: u64,
/// Anomaly type
pub anomaly_type: String,
/// Severity level (1-5)
pub severity: u8,
/// Affected component
pub component: String,
/// Detailed description
pub description: String,
/// Related metrics
pub related_metrics: HashMap<String, f32>,
/// Suggested actions
pub suggested_actions: Vec<String>,
/// Quantum relevance
pub quantum_relevant: bool,
}

Neural Monitor

Anomaly detection is powered by a specialized neural monitor:

async fn detect_anomalies(
snapshot: &PerformanceSnapshot,
neural_monitor: &Arc<RwLock<QuantumNeuralMonitor>>,
) -> Result<Vec<PerformanceAnomaly>> {
let monitor = neural_monitor.read().await;
monitor.analyze(snapshot).await
}

Configuration

The performance monitoring system is highly configurable through several configuration structures:

Core Configuration

pub struct MonitoringConfig {
/// Enable performance monitoring
pub enabled: bool,
/// Sampling interval (milliseconds)
pub sampling_interval_ms: u64,
/// Data retention period (days)
pub retention_period_days: u32,
/// AI optimization settings
pub ai_optimization: AiOptimizationConfig,
/// Quantum monitoring settings
pub quantum_monitoring: QuantumMonitoringConfig,
/// Logging configuration
pub logging: LoggingConfig,
}

AI Optimization Configuration

pub struct AiOptimizationConfig {
/// Enable AI optimization
pub enabled: bool,
/// Path to model
pub model_path: String,
/// Prediction interval (milliseconds)
pub prediction_interval_ms: u64,
/// Minimum confidence threshold
pub confidence_threshold: f32,
}

Quantum Monitoring Configuration

pub struct QuantumMonitoringConfig {
/// Enable quantum monitoring
pub enabled: bool,
/// Enable simulation metrics
pub simulation_metrics: bool,
/// Security level monitoring
pub security_level_monitoring: bool,
}

Logging Configuration

pub struct LoggingConfig {
/// Log level
pub level: String,
/// Output directory
pub output_dir: String,
/// Enable stdout logging
pub stdout: bool,
}

Visualization Configuration

pub struct VisualizationConfig {
/// Enable dashboard
pub dashboard_enabled: bool,
/// Dashboard port
pub dashboard_port: u16,
/// Prometheus integration
pub prometheus_enabled: bool,
/// Prometheus endpoint
pub prometheus_endpoint: String,
/// Grafana configuration
pub grafana: Option<GrafanaConfig>,
/// Quantum visualization
pub quantum_visualization: bool,
}

Default Configuration

impl Default for PerformanceMonitoringConfig {
fn default() -> Self {
Self {
enabled: true,
monitoring: MonitoringConfig {
enabled: true,
sampling_interval_ms: 5000,
retention_period_days: 30,
ai_optimization: AiOptimizationConfig {
enabled: true,
model_path: "models/performance_predictor.onnx".to_string(),
prediction_interval_ms: 60000,
confidence_threshold: 0.7,
},
quantum_monitoring: QuantumMonitoringConfig {
enabled: true,
simulation_metrics: true,
security_level_monitoring: true,
},
logging: LoggingConfig {
level: "info".to_string(),
output_dir: "/var/log/blockchain/performance".to_string(),
stdout: true,
},
},
models_path: PathBuf::from("models"),
visualization: VisualizationConfig {
dashboard_enabled: true,
dashboard_port: 8090,
prometheus_enabled: true,
prometheus_endpoint: "http://localhost:9090".to_string(),
grafana: Some(GrafanaConfig {
url: "http://localhost:3000".to_string(),
api_key: "".to_string(),
dashboard_id: "blockchain-performance".to_string(),
}),
quantum_visualization: true,
},
alerts: AlertConfig {
enabled: true,
email: None,
webhook_url: None,
min_severity: 3,
quantum_alerts: true,
},
}
}
}

Alerting System

The performance monitoring system includes a configurable alerting mechanism:

pub struct AlertConfig {
/// Enable alerts
pub enabled: bool,
/// Notification email
pub email: Option<String>,
/// Webhook URL
pub webhook_url: Option<String>,
/// Minimum severity for notifications (1-5)
pub min_severity: u8,
/// Alert for quantum vulnerabilities
pub quantum_alerts: bool,
}

Alert Levels

  • 1 (Info): Informational events that don't require immediate attention
  • 2 (Low): Minor issues that might need attention eventually
  • 3 (Medium): Issues that should be addressed in the near future
  • 4 (High): Serious issues that need prompt attention
  • 5 (Critical): Severe issues that require immediate intervention

Alert Channels

  • Email: Configurable email notifications
  • Webhook: Integration with external systems through webhooks
  • Console: Real-time alerts in the node console
  • Log Files: Persistent alert records in log files

API and Reporting

The performance monitor provides several methods for accessing collected data:

/// Get the current performance snapshot
pub async fn get_current_snapshot(&self) -> Option<PerformanceSnapshot>

/// Get performance history
pub async fn get_history(&self, limit: Option<usize>) -> Vec<PerformanceSnapshot>

/// Get detected anomalies
pub async fn get_anomalies(&self, limit: Option<usize>) -> Vec<PerformanceAnomaly>

/// Generate comprehensive report
pub async fn generate_report(&self) -> Result<String>

Report Generation

The system can generate comprehensive performance reports:

pub async fn generate_report(&self) -> Result<String> {
let mut report = String::new();
report.push_str("# Performance Monitoring Report\n\n");

// Add current snapshot
if let Some(snapshot) = self.get_current_snapshot().await {
report.push_str("## Current System State\n\n");
report.push_str(&format!("Node ID: {}\n", snapshot.node_id));
report.push_str(&format!("Timestamp: {}\n\n", snapshot.timestamp));

// CPU metrics
report.push_str("### CPU Metrics\n\n");
report.push_str(&format!("- Usage: {:.2}%\n", snapshot.cpu.usage_percent));
report.push_str(&format!("- Frequency: {:.2} MHz\n", snapshot.cpu.frequency_mhz));
if let Some(temp) = snapshot.cpu.temperature {
report.push_str(&format!("- Temperature: {:.2}°C\n", temp));
}
report.push_str(&format!("- Process Usage: {:.2}%\n\n", snapshot.cpu.process_usage));

// Add other metrics
// ...
}

// Add anomalies
let anomalies = self.get_anomalies(Some(10)).await;
if !anomalies.is_empty() {
report.push_str("## Recent Anomalies\n\n");

for anomaly in anomalies {
report.push_str(&format!("### {} (Severity: {})\n\n", anomaly.anomaly_type, anomaly.severity));
report.push_str(&format!("- Component: {}\n", anomaly.component));
report.push_str(&format!("- Detected: {}\n", anomaly.detected_at));
report.push_str(&format!("- Description: {}\n\n", anomaly.description));

if !anomaly.suggested_actions.is_empty() {
report.push_str("#### Suggested Actions\n\n");
for action in anomaly.suggested_actions {
report.push_str(&format!("- {}\n", action));
}
report.push_str("\n");
}
}
}

// Add history summary
// ...

Ok(report)
}

Integration with Visualization Tools

Prometheus Integration

The monitoring system supports Prometheus metrics export for integration with standard monitoring solutions.

Grafana Integration

Integration with Grafana is supported through the Grafana configuration options:

pub struct GrafanaConfig {
/// Grafana URL
pub url: String,
/// API key
pub api_key: String,
/// Dashboard ID
pub dashboard_id: String,
}

Performance Characteristics

The monitoring system is designed for minimal impact on node performance:

  • Low Overhead: Less than 1% CPU usage for monitoring activities
  • Configurable Sampling: Adjustable sampling rate to balance detail vs. overhead
  • Efficient Storage: Automatic data retention management
  • Thread Safety: Concurrent access through Arc<RwLock> wrappers
  • Asynchronous Processing: Non-blocking operation through Tokio tasks

Conclusion

ArthaChain's Performance Monitoring System provides comprehensive visibility into the health and performance of the blockchain network. Through real-time metrics, advanced analytics, and proactive alerting, the system enables operators to maintain optimal performance and quickly address issues before they impact users.